0=-16t^2+56t-20

Simple and best practice solution for 0=-16t^2+56t-20 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+56t-20 equation:



0=-16t^2+56t-20
We move all terms to the left:
0-(-16t^2+56t-20)=0
We add all the numbers together, and all the variables
-(-16t^2+56t-20)=0
We get rid of parentheses
16t^2-56t+20=0
a = 16; b = -56; c = +20;
Δ = b2-4ac
Δ = -562-4·16·20
Δ = 1856
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1856}=\sqrt{64*29}=\sqrt{64}*\sqrt{29}=8\sqrt{29}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-56)-8\sqrt{29}}{2*16}=\frac{56-8\sqrt{29}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-56)+8\sqrt{29}}{2*16}=\frac{56+8\sqrt{29}}{32} $

See similar equations:

| 4f+9=13 | | 3(2x-5)=6x-4-11 | | 3(4x-2)=3x+12 | | -1/5x−7=-3/4+2x−25-3/4 | | x+6-2x=x-29 | | -1/5x−7=-3/4+2x−253/4 | | B=4m+8 | | 6p+80-2p=0 | | 0.7n-1.5+7.3=12.5 | | 50=2h+10 | | h/5-10=3 | | 2x+10+3x-6=24 | | 9=4d−3 | | 3.5x=33.25 | | 8x+6=4x+-14 | | 3t+4=t+2 | | x-7=14x-20 | | 6x=1/2(66+x) | | 6+h=6 | | 5(x-3)+2=2(2x-1)+1+3x | | -2(5+y)-1=3y+3 | | 2)x+3)=x-4 | | 6x=1/2(63+x+3) | | 1/5a+a=9 | | 5b-6b=9 | | 32+z=61 | | 8=3(3x−6) X= | | 10k-3=87 | | 15=•(5•x) | | x²+×=12 | | 5x+14+3x+8+109=360 | | 80=5(b+2) |

Equations solver categories